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&tract. Considering the cylindrically symmetric metric of Marder, a cosmological model 
has been derived which is of Petrov type I. Various physical and geometrical properties 
of the model have been discussed. 

bmt years there has been a lot of interest in cosmological models which are non- 
+e and non-homogeneous. A plane symmetric cosmological model has been 
m c t e d  by Sin& and Singh (1968). Further work in this line has been done by 
@andAbdussattar (1973). In this paper we construct a cosmological mode! which 
ighdrically symmetric and of non-degenerate Petrov type I. The energy-momentum 
mrhasbeen assumed to be that of a perfect fluid. Reality conditions imply that the 
mological constant should always be negative. The model is not a particular case of 
h a i t r e  universe. It represents an expanding and shearing but non-rotating fluid 
h h i c h  is also geodesic. The model becomes conformal to flat space-time in particu- 
&Cases. The expression for the generalized Doppler effect in the model has been 
Jbgiaed. 

1 h a t i o n  of the l i e  element 

kcllindrically symmetric metric is considered in the form given by Marder (1958): 

(2.1) ds2 = A2(dt2 - dxz) - B2 dy2 - C2 dzZ 

ifine 4 4 C are functions of t only. The energy-momentum tensor for perfect fluid 
b l u h  is given by 

'coordinates are assumed to be co-moving so that 2' = A,2 = A 3  = 0. nefkld equations 
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for the line element (2.1) are as follows: 

$[ (%+%) -p( %+2) +%] + A  = -8np 

p[(;i?)4+F]+A 1 A  = -8np 

p[(S),+%]+A 1 A  = -8np 

& [ A (  B C )  Bi?] 1 A4 B4 c4 - - -+- +- - A  = 8 ~ p .  

(24) 

The non-vanishing components of the Weyl conformal curvature tensor C, for 
the metric (2.1) are as follows : 

Equations (2.4H2.7) are four equations in five unknowns A, B, C, p and p. For the 
complete determination of these unknowns one more condition has to be imposed 03 

them. Here we assume that C:: = C;: = 0. The resulting space-time will obviously 
be of nondegenerate Petrov type I. Thus we have 

=-+--- 
2B 2C BC . 

From (2.4), (2.5) and (2.6) we obtain 

B44 c44 -.=- 
B C  

and 

Equations (2.9) and (2.11) give 

From (2.9) and (2.10) we have 

(210) 
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(210) gives 

K 
[;)4 = z 

w g h  aa arbitrary constant of integration. 
B/C = p, BC = v so that B2 = yv and C2 = v/y. We have from (2.12) 

A4 1 v4 1 K2 
A 2 v 2 vv4' 
- = - --- - 

f p ~ ~  (213) we have ($q4 =j,-?(.-.i). 1 v44 1 v: K 2  

EpDations (215) and (2.16) give 

Io that 

v = at+B 
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(2.14) 

(2.15) 

(2.16) 

(2.17) 

xherea and j are arbitrary constants of integration. From (2.15) we have 

A = L(at+fl)(1-a2)/2 (2.18) 

h a  = K/a and L is an arbitrary constant of integration. Since 

p = M(at+B)" 

we have from (2.17) and (2.19) 
M is an arbitrary constant of integration. 

B2 = M(at+@'+" 
and 

kore, the metric (2.1) admitting perfect fluid distribution reduces to 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
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3. Some physical and geometrical features 

The pressure and density in the model (2.23) are given by 

3 
4L2 

81tp = - ( i -a2) f2-3+~ (3.11 

and 

3 
8np = -(I 4L2 -u2)f2-'-A. (34 

The reality conditions p > 0, p > 0, p 2 3p lead to 

A e O  (33) 
and 

If a = 0 the metric (2.23) becomes conformal to flat space-time. Also if R = ?I, 
space-time becomes flat. From (3.4) it is clear that the model exists during a h t c  
interval of time t ,  < t i t , .  

The flow vector 2 of the distribution is given by 

1 ' = 2 2 = ; 1 3 = 1  1 -  - 2  2 - I 3 = 0  - 

where U is the velocity of the source at the time of emission and U ,  is the z cOmPOnen' 
of the velocity. 

The scalar of expansion 0 is given by 

(3.7) 

The tensor of rotation W j  given by wj = Acj -A j ; i  is zero. Thus the fluid fillingtbt& 
verse is non-rotational. 
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"ponmts of the shear tensor oij defined by 

Qij = A. GJ . -@(g i j - l i l . j )  

R 

cl&$ = 0. 

k$ = 3, there is no expansion, rotation or shear. However, this case does not cor- 
Rspood to a realistic distribution. 

A < 0 and K j  = 0, Raychaudhuri's (1955, 1957) equation shows that the 
had a singularity in the h i t e  past. However, since the model itself exists in a 

Meextent of time, this singularity does not occur. We may view the universe repre- 
mted by this model to be evolved from an earlier stage at t = t l  , in which radiation 
mmcollisionai equilibrium with matter and they together are represented by a perfect 

forwhichp = f p .  At t = t2 it goes over to another model in which matter becomes 
~dluous  so that p is zero, the universe itself monotonically expanding all the time. 
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